Как помочь ребенку справиться с решением текстовой задачи?
Автор: Соболева Светлана Николаевна
Как помочь ребенку справиться с решением текстовой задачи?
Для того, чтобы организовать разноуровневую работу над задачей в одно и то же время, мы используем индивидуальные карточки-задания, которые готовим заранее в трех вариантах. Карточки содержат системы заданий, связанные с анализом и решением одной и той же задачи, но на разных уровнях. В размноженном виде они предлагаются учащимся в виде печатной основы. Ученики выполняют задание письменно в специально отведенном для этого месте. Предлагая ученику вариант оптимального для ученика уровня сложности, мы осуществляем дифференциацию поисковой деятельности при решении задач.
Приведем примеры таких карточек.
Задача (4 кл.) От двух пристаней, расстояние между которыми 117км, отправились одновременно навстречу друг другу по реке два катера. Один шел со скоростью 17 км/ч, другой – 24 км/ч. Какое расстояние будет между катерами через 2 ч после начала движения?
1-й уровень
1. Рассмотри чертеж к задаче и выполни задания:
17 км/ч→ t=2ч ←24 км/ч
I_______________________________________________I
117 км
а) обведи синим карандашом отрезок, обозначающий расстояние, пройденное первым катером за 2 часа. Вычисли это расстояние;
б) обведи красным карандашом отрезок, обозначающий расстояние, пройденное вторым катером за 2 часа. Вычисли это расстояние.
в) рассмотри отрезки, обозначающие расстояние, пройденное двумя катерами за это время. Вычисли это расстояние.
г) прочитай вопрос задачи и обозначь дугой на чертеже отрезок, соответствующий искомому. Вычисли это расстояние.
Если задача решена, то запиши ответ.
2. Рассмотри еще раз задание (1) и запиши план решения этой задачи (без вычислений).
3. Проверь себя! Ответ: 35 км.
У данной задачи есть более рациональный способ решения. Но он, как правило, более труден для слабых учащихся, так как предусматривает оперирование менее конкретным понятием «скорость сближения». Поэтому предлагаем рассмотреть этот способ решения и объяснить его. Это задание обозначим в карточке как дополнительное.
Дополнительное задание.
4. Рассмотри другой способ решения данной задачи. Запиши пояснения к каждому действию и вычисли ответ:
1) 17+24= 3) 117 - … = …
2) …*2=… Ответ:
2 уровень
1. Закончи чертеж к задаче. Обозначь на нем данные и искомое:
2. Рассмотри «дерево рассуждений» от данных к вопросу. Укажи на нем последовательность действий и арифметические знаки каждого действия.
17 км/ч 24 км/ч ?
(скорость сближения )
2ч ? ( время)
расстояние, пройденное 117км
двумя катерами ?
(расстояние между двумя катерами )
3. Пользуясь «деревом рассуждений», запиши план решения задачи.
4. Запиши решение задачи:
1) по действиям;
2) выражением.
Ответ:
Дополнительное задание:
5. Пользуясь чертежом, найди другой способ решения задачи и запиши его:
1) по действиям с пояснением;
2) выражением.
Ответ:
6. Проверь себя! Сопоставь ответы, полученные разными способами.
3 уровень
1. Выполни чертеж.
2. Пользуясь чертежом, найди более рациональный способ решения. Составь к этому способу «дерево рассуждений».
3. Запиши план решения задачи в соответствии с «деревом рассуждений».
4. Пользуясь планом, запиши решение задачи:
1) по действиям;
2) выражением.
Ответ.
5. Проверь себя! Ответ задачи 35 км.
Дополнительное задание.
Узнай, какое расстояние будет между катерами при той же скорости и направлении движения через 3ч? 4ч?
В задачах намеренно как бы изолируется план решения от вычислительных действий. Это сделано с целью формирования умения осуществлять целостное планирование решения задачи. Преимущество его перед «пошаговым» видим в том, что при этом внимание учащихся концентрируется на поиске обобщенного способа решения задачи вне зависимости от конкретных числовых данных, отвлекаясь от них.
Важным является вопрос об организации такой работы на уроке. Благодаря тому, что варианты заданий приспособлены к возможностям учащихся, а печатная форма предъявления задания снимает сложности, связанные с оформлением, на уроке может быть организована самостоятельная работа учащихся. Во время этой работы учитель имеет возможность оказать индивидуальную помощь отдельным учащимся.
Но возможны и другие варианты. Например, по мере надобности учитель может руководить работой учащихся одного из уровней, в то время как другие работают самостоятельно.
Может быть организована и групповая работа учащихся на уроке. При этом дети каждой группы обсуждают и выполняют задания совместно. Состав таких групп может быть как одноуровневым, так и разноуровневым, в зависимости от целей, которые ставит учитель в этой работе. В конце урока работы учащихся собираются учителем для проверки.
Работа над текстовой задачей на уроке с помощью описанных мной карточек-заданий органично вписывается в ход урока, удобна в организации, повышает самостоятельность учащихся, позволяет формировать у них умения решать текстовые математические задачи на доступном уровне сложности, - это совершенствует обучение решению задач учащихся начальных классов.